Finite element prediction of transchondral stress and strain in the human hip.

نویسندگان

  • Corinne R Henak
  • Gerard A Ateshian
  • Jeffrey A Weiss
چکیده

Cartilage fissures, surface fibrillation, and delamination represent early signs of hip osteoarthritis (OA). This damage may be caused by elevated first principal (most tensile) strain and maximum shear stress. The objectives of this study were to use a population of validated finite element (FE) models of normal human hips to evaluate the required mesh for converged predictions of cartilage tensile strain and shear stress, to assess the sensitivity to cartilage constitutive assumptions, and to determine the patterns of transchondral stress and strain that occur during activities of daily living. Five specimen-specific FE models were evaluated using three constitutive models for articular cartilage: quasilinear neo-Hookean, nonlinear Veronda Westmann, and tension-compression nonlinear ellipsoidal fiber distribution (EFD). Transchondral predictions of maximum shear stress and first principal strain were determined. Mesh convergence analysis demonstrated that five trilinear elements were adequate through the depth of the cartilage for precise predictions. The EFD model had the stiffest response with increasing strains, predicting the largest peak stresses and smallest peak strains. Conversely, the neo-Hookean model predicted the smallest peak stresses and largest peak strains. Models with neo-Hookean cartilage predicted smaller transchondral gradients of maximum shear stress than those with Veronda Westmann and EFD models. For FE models with EFD cartilage, the anterolateral region of the acetabulum had larger peak maximum shear stress and first principal strain than all other anatomical regions, consistent with observations of cartilage damage in disease. Results demonstrate that tension-compression nonlinearity of a continuous fiber distribution exhibiting strain induced anisotropy incorporates important features that have large effects on predictions of transchondral stress and strain. This population of normal hips provides baseline data for future comparisons to pathomorphologic hips. This approach can be used to evaluate these and other mechanical variables in the human hip and their potential role in the pathogenesis of osteoarthritis (OA).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Prediction of Transchondral Stress and Strain in the Human Hip: Effects of Cartilage Constitutive Model

Introduction: Osteoarthritis (OA) may be initiated by abnormal mechanical loading, which can alter both cartilage metabolism and mechanical behavior [1]. OA of the hip affects approximately 10% of the population [2]. Understanding the causes of hip OA is the first step in developing treatment strategies to delay or reverse disease progression. Surface fibrillation is common in early-stage OA, a...

متن کامل

Prediction of Crack Initiation Direction for Inclined Crack Under Biaxial Loading by Finite Element Method

This paper presents a simple method based on strain energy density criterion to study the crack initiation angle by finite element method under biaxial loading condition. The crack surface relative displacement method is used to eliminate the calculation of the stress intensity factors which are normally required. The analysis is performed using higher order four node quadrilateral element. The...

متن کامل

Prediction of Fatigue Life in Notched Specimens Using Multiaxial Fatigue Criteria

In this research, the effects of notch shape on the fatigue strength of 2024-T3 aluminum alloy notched specimens have been studied using experimental and multiaxial fatigue analysis. For this purpose, four set of specimens with different notch shape were prepared and then fatigue tests were carried out at various cyclic longitudinal load levels. Load controlled fatigue tests of mentioned specim...

متن کامل

FINITE ELEMENT PREDICTION OF DUCTILE FRACTURE IN AUTOMOTIVE PANEL FORMING: COMPARISON BETWEEN FLD AND LEMAITRE DAMAGE MODELS

In sheet metal forming processes with complex strain paths, a part is subjected to large plastic deformation. This severe plastic deformation leads to high plastic strain localization zones and subsequent accumulation of those strains. Then internal and superficial micro-defects and in other words ductile damage is created. This damage causes quality problems such as fracture. Therefore, design...

متن کامل

FE-Based Analysis of Hot Forming Process Using the Flow Stress Prediction Model

In hot forming process, the workpiece undergoes plastic deformation at high temperature and the microstructure of the workpiece changes according to the plastic deformation. These changes affect the mechanical properties of workpiece. In order to optimize this process, both the plastic deformation of workpiece and its microstructural changes should be taken into consideration. Since material be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 136 2  شماره 

صفحات  -

تاریخ انتشار 2014